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Abstract

As ion chromatography (IC) has matured as an analytical technique it has become more automated. Most instrument
control and data handling is now handled by computers. However, IC has not seen the abundance of automated method
optimisation techniques which are provided to conventional chromatography. To a certain extent this was because IC
differed greatly in the approach required to optimise selectivity and sensitivity. There was quite a diverse range of
chemistries (or separation mechanisms) applicable to IC, such as ion exchange, ion interaction, etc.

This paper describes an effort to fill this gap by developing an expert system which can give comprehensive advise on
suitable method conditions for a variety of IC mechanisms. To build this system we applied an approach known as induction
by machine learning, which was developed within the field of artificial intelligence (Al). A database of over 4000 published
methods using IC, where the sample information and the chromatographic conditions were recorded, was used to train an
expert system (ES).

Both induction and a neural network model were applied to this task and an expert system which can advise on the
following IC method conditions: mobile phase, column, pH, mechanism, post-column reactors, suppressor use and gradient
applicability, was successfully developed. This paper presents a summary of the most pertinent conclusions from this study.

A test set of different methods was extracted from the database and they were not applied in the training of the expert
system. These were used to test the expert system and different amounts of information were used as inputs. The resulting
outputs of the expert system were evaluated by the expert, who decided whether the method would work or not and if it was
a good method or the ideal method for the application. Over 85% of methods were found to work and almost 62% of the
methods were considered ideal. These were acceptable results when one considers the limitations of using a database of
published methods as a learning set and the time saved by the use of machine learning.

Keywords: Induction by machine learning; Expert systems; Optimization; Ion chromatography optimization; Machine
learning; Anions; Cations

1. Introduction include ion interaction, ion exchange and ion exclu-
sion [1]. Each of these mechanisms requires a

Ion chromatography (IC) can be carried out using column-mobile phase combination which can
one of several different separation mechanisms, these produce the chemistry necessary to effect the sepa-

ration of the ions. Once the ions are separated they
- need to be detected, and there are many different
*Corresponding author. detectors available, together with detection enhance-
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ment devices such as post-column reactors or sup-
pressors.

The selection of a combination of these method
conditions is a configuration task, where the chroma-
tographer configures the instrument for a given
application. This differs from classification problems,
which are normally solved using machine learning,
and thus several modifications to both the application
of machine learning and the final implementation of
the expert system (ES) [2] were required. All of the
examples of machine learning in the chemical litera-
ture deal with classification-type problems [3-9].

Over the last decade much progress has been made
in the area of machine learning, including genetic
algorithms [3] and neural networks. Most attention
was given to neural networks which attempt to
simulate the workings of the brain [4]. However,
another commonly used technique, known as induc-
tion, operates on the principles of inductive logic.

Many algorithms have been developed within
artificial intelligence (AI) research which perform
classification based on an induction method. Induc-
tion is simply the informal logical process of induc-
ing rules from examples. Induction can provide
many advantages over neural networks, including the
development of legible rules rather than an incom-
prehensible network of weightings. These techniques
have been successfully used to teach a computer how
to make decisions in a number of expert applications,
some of which tackle chemical problems.

The US Environmental Protection Agency applied
induction to building an ES for the estimation of
molecular masses and the identification of toxic and
other volatile organic compounds using mass spectra
[5-7]. The resultant ES was in the form of a decision
tree. The ES was developed using a training set of 78
mass spectra of 8 groups of compounds: benzenes,
alkanes/alkenes, nonhalobenzenes, chlorobenzenes,
chloro alka(e)nes, bromoalka(e)nes, mono- and di-
chloroalka(e)nes, tri-, tetra- and pentachloro-
alka(e)nes. The rules developed were then tested
against the training set and found to give 93 to 100%
correct identification. This compared with 62-98%
using a SIMCA pattern recognition algorithm. The
chloroalka(e)nes were the only group from the
training set that failed to achieve 100% prediction
accuracy.

This ES was later improved both by allowing the

use of low-concentration spectra [6] and by improv-
ing the molecular mass prediction method [7]. The
ES has been evaluated using over 100 spectra and
has shown an average classification accuracy of
90%.

Massart and coworkers [8,9] performed several
evaluations of the induction methods provided with
the commercial systems EX-TRAN and TIMM, and
compared their performance with classical pattern
recognition systems. These systems were compared
with k-nearest-neighbour and linear discrimination
analysis. A set of 100 olive oil classifications was
used to train the system. The data included in-
formation on numerical results of the oil analysis and
four possible conclusions for the district of origin.
The use of numerical rather than symbolic inputs is
perhaps not the best way to evaluate induction
techniques, as they use fairly low level algorithms to
handle such continuous data. Despite this the results
showed that these methods were as good as (some-
times better than) the traditional pattern recognition
systems.

The only previous research found that tackled a
chromatography problem was the work of Appel et
al. [10]. This group applied machine learning to
classify two-dimensional gel electrophoresis patterns.
The system was applied to biological samples such
as a liver biopsy. The work of Gelernter et al. [11]
was interesting in that they used chemical structures
as a training attribute to classify various reaction
schemes. The data from the machine learning were
then further refined using a modified version of
Cameo, a program developed specifically for
generating descriptions of organic chemistry mecha-
nisms. No data on the success of the system were
given. Rose and Gasteiger [12] describe a similar
application but specifically applied to the Diels—
Alder reaction. They did not supply any information
on the algorithm or any results of the system
evaluation. All machine learning is based on learning
by examples, and for this reason it is essential to
have a large number of example data and the
conclusions elicited for that data.

1.1. Classification

Classification can be defined as the reduction of a
large number of observations into discrete categories



M. Mulholland et al. | J. Chromatogr. A 739 (1996) 15-24 17

based on some commonality between class members.
The following are some examples of classification
problems.

Diagnosis: One of the first classification tasks
tackled in Al was the diagnosis of diseases. The
multitude of illnesses and their symptoms can be
reduced to some well-understood ailments by recog-
nising common symptoms.

Naming organic compounds: Naming organic
compounds requires several levels of classification
based on the various functional groups. For instance,
organic acids, alcohols, sugars and carbohydrates are
just a few of the possible classes of compounds
which need to be recognised by features of the
molecular make-up.

Identification of spectra: Various qualitative meth-
ods of spectroscopy allow the classification of spec-
tra according to features arising from the presence of
functional groups in the molecules being studied. For
instance, distinctive bands are observed in IR spectra
which are indicative of the presence of a double-
bonded oxygen. It is thus feasible to build up a set of
rules by which you can identify (or classify) com-
pounds by examining their IR spectra.

In summary, most machine learning tools and
expert system technology can be applied to any
problem which can be framed as a classification.
(Where there is a set of examples which list the
various properties and the resultant classification.)
Strictly speaking the configuration of an IC method
is not a classification problem but rather a configura-
tion problem; however, the problem could be framed
in terms of several interdependent classifications.

1.2. Induction

This paper describes the application of a common-
ly used type of machine learning algorithms which
are based on the method of induction. Inductive logic
is best known as a scientific method of acquiring
knowledge from the collection and examination of
raw data. When one performs or collects the results
of experiments and extracts a general rule, the logic
is referred to as inductive.

This paper describes the application of an induc-
tion technique known as INDUCT, which was based
on a probability theory algorithm [13,14]. Most
inductive methods used the highest inductive statistic

to choose rules, i.e. they make rules based on a high
rate of occurrence in the database. This meant that
cases which were not well represented in the data-
base may be ignored, and hence needed to be added
later.

One of the limitations of conventional expert
systems was that they were very difficult to modify.
For this reason, a technique known as ripple down
rules (RDRs), developed over the past few years by
workers at our Al Laboratory, was selected as the
implementation for the IC ES. RDRs were spe-
cifically designed to cope with the requirement of ES
maintenance and several medical expert systems
have been built using this system [15,16].

2. Theory
2.1. Ripple down rules

RDRs are a formalised structure of rules used for
building ESs. The technique was developed as an
alternative to traditional ES methods and was an
attempt to solve many problems existing in the
engineering and maintenance of knowledge. Tradi-
tional ESs did not arrange the rules as they were
added to system [17]. This resulted in an explosion
in the number of potential pathways which can use a
particular rule, hence if a new rule is added or an old
rule modified all these pathways need to be re-
validated. In other words, it becomes very difficult to
maintain an ES and to control the effects of addition-
al knowledge. RDRs were developed to combat these
problems and they employ a rigid binary tree struc-
ture such that any new rule added has a predictable
effect. This format not only enhances the ease of
maintenance of an expert system but also provides a
method for knowledge acquisition that allows the
experts to easily build their own system without the
need of software support.

The RDR rules are formatted in a tree-like struc-
ture where each rule is allowed two branches, a true
branch and a false branch. In order to clearly explain
the process used to build an RDR tree, a simple
example can be given. RDR trees are built using a
selection of typical cases together with their conclu-
sions. For this example we will use the selection of a
detector for an ion chromatography method.
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Table 1
Example cases with which to build an RDR tree

Sample UV visibility Post-column reactor ~ Suppressor  Detector applied for this case
Organic acid yes no no UV detection

Chloride sample has both UV and non-UV absorbing solutes  no yes Conductivity

Transition metal  no yes no UV detection

Iodide yes no yes Conductivity

Bromide yes no no Amperometry

Cyanide no no no Amperometry

Table 1 shows the cases used in the development
of the tree, these are purely speculative and were
chosen simply to illustrate the process. The first case
concerns the assay of organic acids and is used to
create rule 1 in Fig. 1. As this case was used to
create the rule it is saved as the cornerstone case for
that rule. This case can be used later to define the
context in which rule 1 was made.

The second case in Table 1 is now presented to the
RDR tree. As the case does not fall within the
premise of rule 1 the system cannot provide a
solution and another rule needs to be added to the
system. To be consistent with a philosophy of
knowledge in context the user is presented with a list
of differences between the cornerstone case of rule 1
and the current case. One or more of these differ-
ences can be selected as the premise(s) of rule 2. As
rule 1 evaluated to false for this case the new rule is
added on the false branch of that rule. Consider case
4: the RDR tree suggests the use of UV detection for
this case as rule 1 evaluates to true. However, this is
an incorrect result. The user needs to add a new rule
and is presented with a difference list from which to
select new premises. This rule is added to the true
branch of rule 1. In this way the RDR tree begins to
grow.

Ruk1
It UV visibilty = yes

Then UV detecti on
= w‘

Rub 2 Rub 4

It Sample = Chbride If Suppressor = yes

Then Conducti vity Then Conducti vity

false faise

Aub 6 RAub 5
it Sample = Cyanide it Sample = Bromide
Then Amperometry Then Amperometry

Fig. 1. An example RDR tree for the selection of an IC detector.

Unlike other ES methods, RDR trees do not
distinguish between the development and mainte-
nance stages. New rules can be added as required,
and because they are added in a controlled way,
there is no need to validate the system with each new
addition. Each new rule is embedded within the
context of the cornerstone case and is not applicable
outside this context.

2.2. Induction of the rules

Three different machine learning methods were
first evaluated using a reduced set of the database of
examples. They were applied to the induction of
rules for the selection of an IC detector [18,19].
INDUCT, developed by Gaines, was selected as the
most suitable induction method for IC.

3. Application of machine learning and RDRs to
the configuration of an IC method

3.1. Reducing the IC method to several
classifications

Firstly, the IC method was divided into several
individual classifications for the eight method con-
ditions, shown in Table 2. The classes defined for
columns and eluents were based on the divisions
presented in Paul Haddad’s book [1]. Table 2 shows
a complete set of classifications for all the conditions
except the detectors and the eluents. These attributes
had larger numbers of possible values (e.g., the
eluent has a total of 48 possible values).

The selection of suitable eluent classifications
proved a major task. The methods detailed in the
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database contained descriptions of the eluent which
were different for almost every method. This meant
that there were over 2000 eluent descriptions; it
would not have been useful to induce rules using
these. Firstly, because there would be insufficient
examples for each eluent and, secondly, the machine
learning algorithm could not determine when eluents
were similar and hence had similar properties. Thus
it was decided to rationalise the eluent into 48
possible values. These values were chosen by using
the breakdown of eluent types described by Haddad
[1]. Several classes of eluents for each separation
mechanism were chosen and these are shown in
Table 3. The database was searched for examples of
these classes of mobile phases and replaced with the
labels shown in Table 3. The UNIX tools SED and
AWK were used for this purpose.

Having decided the relevant values for each
method condition it was now necessary to define
which features of an application (attributes) could
influence the selection of an appropriate method. It is
clear that the nature of the sample, and the applica-
tion of the method will play a role in a given choice,
hence the following attributes were extracted for
each method described in the database.

Table 3
The classes of eluents in IC

1. Solute: this is the name of the main solute of
interest.

2. Ion class: the ionic nature of the sample.

3. Halides: this defines whether any halides are to be
assayed and the nature of the halide.

4. Sulphates: this defines whether sulphate or sul-
phite ions are to be assayed.

5. Nitrates: this defines whether nitrate or nitrite
ions are to be assayed.

6. UV absorbance: if the sample contains just UV
absorbing ions or a mixture of both absorbing and
non-absorbing ions is defined by this attribute.

7. No. of solutes: the number of ions which need to
be separated and assayed by the method.

8. Application: the application domain is defined by
this attribute.

These attributes were developed iteratively by apply-
ing machine learning then extending the range of
attributes to better define the domain.

Having defined a range of good sample and
application attributes, a decision was required as to
which attributes should be used for the classifications
of each method condition. There were two options
available. Firstly, a fixed order for the selection of

Ion-exchange (suppressed) Ion-exchange (non-suppressed)

Ion-exclusion Ion-interaction

Hydrogen ions
Hydrogen and silver ions
Silver ions

Hydroxide ions
Phenate ions

Carbonate buffer
Amino acid ions
Carbonate ions

Borate ions

Phosphate ions
Hydroxide ions

Barium ions

Lead ions

Zinc and hydrogen ions
Bicarbonate ions
Nitrate ions

EDTA

EDDA

aliphatic acid ions

inorganic ions

inorganic acid ions

organic base ions

EDTA ions

UV absorbing inorganic ions
aromatic acid ions

copper ions

borate ions

sulphonic acid ions

UV absorbing organic base ions

water tetrabutyl ammonium
hydrochloric acid aliphatic sulphonic acids
HIBA PIC reagents

sulphuric acid

weak acid

nitric acid




M. Mulholland et al. | J. Chromatogr. A 739 (1996) 15-24 21

Table 4

Information given to the machine learning algorithm

Mechanism Column Eluent

Solute mechanism column

Ion class solute mechanism

Halides ion class solute

Sulphates halides ion class

Nitrates sulphates halides

UV absorbance nitrates sulphates

No of solutes UV absorbance nitrates

Application no of solutes UV absorbance
application no of solutes

application

the method conditions could be described and only
attributes previously defined are used by INDUCT to
classify the next method condition. For instance, if
the order was specified as foilows

1. mechanism,
2. column,
3. eluent,

INDUCT would then be given sample and applica-
tion information on which to select the mechanism.
After the mechanism was chosen, the added in-
formation on the sample, application and the mecha-
nism could be used to define a column, and sample,
application, mechanism and column could be used to
select a eluent and so on until the method was fully
defined. This is shown in Table 4. If the machine
was forced to learn in this way, then the final expert
system would be forced to use that defined order to
select conditions. However, this method was the only
way machine learning could currently be applied to

Table 5
Results for the evaluation of the knowledge bases

configuration-type problems without modification. It
was easy to see how much information was lost by
using this technique and it certainly did not reflect
the way in which a typical chromatographer per-
formed this task.

To understand the problem with developing RDR
trees in the determinate fashion described above,
consider the following example. If the analyst
wished to use a specific column, the ES would
contain no rules on the selection of a mechanism
based on this column. In other words, there was no
way to express higher-order relationships between
the method conditions. Couple this problem to the
fact that the order of selecting various conditions
could vary from sample to sample and imposing a
fixed order would therefore limit the scope of the
expert system.

For these reasons another approach was chosen
which allowed more flexibility but required the
development of a special iterative technique of
evaluating the individual RDR trees. This approach
required all method conditions to be used as attri-
butes for the determination of each individual con-
dition, thus eight RDR trees were developed, each
using 15 attributes, with the INDUCT algorithm.

Table 5 shows the number of rules together with
the errors observed for each of these trees. The
training set initially consisted of over 4000 methods
taken from the published literature over a ten-year
period up to 1990. As induction could only deal with
single-solute cases this was expanded to provide a
separate method for each solute described, resulting
in a final set of 12 000 examples. A random 10%
sample was removed to use as a test set. The
database was also cross-validated extensively to

Knowledge base Number of rules

Errors in database (%)

Errors in test set (%)

Column 440 6.83
Mechanism 39 0.09
Detector 407 6.8

Suppressor 67 3.79
Eluent 598 11.69
Gradient 113 1.83
pH 321 8.61
Post-column 58 0.56

9.65
0.37
8.79
434
16.96
3.05
10.85
0.78
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check for homogeneity [20]. Table 5 shows the
accuracy of prediction for the overall training set
together with that for the test set.

All of the trees showed higher errors for the test
set and this is to be expected. The training set was
used to generate the rules and thus the trees should
contain knowledge on these cases.

Most of the trees showed errors of less than 10%
with the exception of the selection of the mobile
phase. The mobile phase was poorly defined in the
original database and hence could not be expected to
provide rules with low errors. This point was also
demonstrated by the fact that there was not such a
large difference in the errors between the training
and test data, suggesting that the information in both
sets was unable to produce completely satisfactory
rules.

M. Mulholland et al. | J. Chromatogr. A 739 (1996) 15-24

The trees were also examined to find out if they
used rules which were dependent on other method
conditions. Without exception all trees used rules
which required other method information. Table 6
shows the number of rules using each method
condition for the selection of an IC column, and
Table 7 shows the same for the selection of the
mobile phase. It was clear that the IC method
conditions were interdependent and thus justified the
decision to use interdependent trees.

3.2. Configuration of the IC expert system

Having developed a set of interdependent RDR
trees, it was necessary to design a method of
consulting these. Since an IC method was indetermi-
nate by nature it was necessary to develop a tech-

Table 6
The results of the evaluation of the complete expert system

Sample Sample +detector Sample +column Sample+suppressor Totals
% no good 93 18.6 11.6 14.0 15
% work 30.2 279 279 20.9 224
% good 14.0 7.5 209 16.2 16.4
% ideal 46.5 46.5 39.5 48.8 46.1
Total % work 90.7 81.4 88.4 86.0 85.0
Total % good or ideal 60.4 53.5 60.5 65.1 62.6

Table 7
The % rules using method and sample information

IC method condition % rules for the column

% rules for the mobile phase

UV absorbance 1.6 3.5
Suppressor 3.4 5.6
Sulfate present 4.6 2.8
Solute number 73 7.5
Solute name 11.6 13.2
Post-column reaction 34 1.8
pH 7.6 8.0
Nitrate present 33 53
Mobile phase 13.0 -

Mechanism 4.5 1.1
Ion class 8.2 9.0
Halides present 6.7 7.1
Gradient 3.8 1.7
Detector 13.1 10.7
Application 8.9 15.3
Column - 6.8
Total method information 48.1 35.7
Total sample information 51.9 64.3
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Fig. 2. The propose and revise method.

nique which was completely independent of the
order of consultation of the trees.

To do this a propose and revise method was
developed, all trees first were consulted and the
conclusions examined and revised by further con-
sultations. This was an iterative process that could
lend itself to parallel processing. This technique was
known as recursive RDR (RRDR)

The next step was to perform a standard RDR
consultation on each of the trees. This had the dual
effect of forcing a decision for attributes not yet
decided and also checking for any remaining incon-
sistencies within the standard RDR philosophy. Any
revisions proposed by the RDR consultation were
then checked against recursive RDR, to ensure any
RDR updates were consistent with each other, and if
all the proposed conclusions evaluated to true then
the process was complete. This process is illustrated
in Fig. 2. A full explanation of the method was
published elsewhere [20].

3.3. Implementation

An RDR shell was developed using the C pro-
gramming language and the HyperCard program
available on Apple Macintosh computers. All of the
functions of the package were available to the
programming language (Hyper Talk) that forms part
of the application.

In the case of the IC expert system, minimal
modifications were required to the basic shell to
initiate development, and maintain the early stages of
exploration. Once the basic algorithms had been
proven, the system was provided with a simple and
intuitive graphical front end, again developed in
HyperCard. The system has been applied to several
different-performance Macintosh machines.

4. Results

The accuracy of the overall system was evaluated
by presenting 50 cases, all of which were excluded
from the training set, to the ES. Seven consultations
were performed for each of these 50 cases, each
giving a different set of information to the ES (e.g.
sometimes only the sample information was given
and other starting information included the column
or the separation mechanism, etc.).

The methods suggested by the ES were then
presented to the expert (Haddad), who judged them
to be ‘no good’, ‘workable’, ‘good’ or ‘ideal’. The
results of this evaluation are presented in Table 5.

All results were expressed as a percentage of the
total number of cases studied and each column of
Table 5 gives the result achieved when the column
heading data was given to the system. Overall, 85%
of the methods proposed would work and 62% were
good or ideal. Surprisingly, the best results were
observed when the minimum amount of data was
given to the expert system (see the results for sample
information only). This showed that the most suc-
cessful rules were developed using the sample
information. This was probably due to the fact that
there were many conflicting cases defined by method
conditions. These cases resulted from published
papers that attempted new techniques which did not
achieve subsequent acceptance.

5. Conclusions

In conclusion, the machine learning program,
INDUCT, together with the ES development tool,
RDR, were successfully applied to create an ES for
IC. Several problems were encountered due to the
nature of the IC domain and solutions were de-
veloped which performed well.

The main advantage of this research was that it
showed that it is possible to build ESs automatically
without the need for the lengthy process of knowl-
edge engineering. Knowledge could be extracted
from previous examples and gave accuracy results of
up to 90% in the development of IC methods.

The next stage of the work is to evaluate the ES in
a laboratory environment and independently assess
the validity of the IC methods proposed.
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